Week 7
Oct 01, 2025
In today’s class we will learn In today’s class we will:
Textbook Reference: JA 10; SDG 3.2
A continuous random variable is a random variable that can take any value on some interval or intervals of the real line, including perhaps the entire real line, and for which the probability of any specific outcome \(x^*\) occuring equals zero.
Example:
Weekly earning: \(S=[0,\infty)\)
Unemployment rate: \(S=[0,1]\)
| Discrete | Continuous | |
|---|---|---|
| Sample space | \[ S=\{x_1^*,x_2^*,\ldots x_n^*\} \] | \[ S=\{X|X\subset \mathbb{R}\} \] |
| Definition | \[ p_X(x_k^*)=P(X=x_k^*)\quad \text{ (pmf/pf)} \] | \[ f_X(x)=F'(x)\quad \text{ (pdf)} \] |
| Computing probability | \[ P(X\in A)=\sum_{x_k^*\in A}p_X(x_k^*) \] | \[ P(X\in A)=\int_{A}f(x)dx \] |
| CDF | \[ F_X(x_k^*)=P(X\leq x_k^*)=\sum_{y\leq x_k^*}p_X(y) \] | \[ F_X(x)=P(X\leq x)=\int_{-\infty}^x f(y)dy \] |
Note that the total probability over the sample space should add up to 1.
| Discrete | Continuous | |
|---|---|---|
| Expected value or mean | \[ \mu_X=E(X)=\sum_{k} x_k^* p_X(x_k^*). \] | \[ \mu_X=E(X)=\int_{-\infty}^\infty xf(x)dx. \] |
| Variance | \[ \sigma_X^2=Var(X)=\sum_{k} (x_k^*-\mu_X)^2 p_X(x_k^*). \] | \[ \sigma_X^2=Var(X)=\int_{-\infty}^\infty (x-\mu_X)^2 f(x)dx. \] |
| Standard Deviation | \[ \sigma_X=\sqrt{Var(X)} \] | \[ \sigma_X=\sqrt{Var(X)} \] |
Recall when we define sample quantiles in Week 3. Here we define the population analog:
For any \(q\), with \(0<q<1\), the population quantile \(\tau_{X,q}\) of a continuous random variable \(X\) is the value for which
\[P(X\leq \tau_{X,q})=F_X(\tau_{X,q})=q.\]
Mathematically, \(\tau_{X,q}=F^{-1}(q)\) is the inverse of \(F(x)\).
A random variable \(X\sim\text{Uniform}(0,2)\). Compute the population mean, standard deviation, the quantile function, and the median (quantiles at \(q=0.5\)).
X is a continuous random variable with following pdf:
\[f_X(x)=\begin{cases}ax,&-1\leq x<0\\ x,& 0\leq x<1\\ 0,&\text{otherwise}\end{cases}\]
Determine the value of \(a\), the cdf \(F_X(x)\), and the quantile function \(\tau_{X,q}\), and the population mean \(E(X)\).
| Definition | Properties | |
| Joint pdf | \[ f_{XY}(x,y) \] \[f_{XY}(x,y)\geq0, \quad\forall(x,y) \] \[\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{XY}(x,y)dx dy=1, \quad\forall(x,y) \] |
\[\text{Marginal pdf of X: }f_X(x)=\int_{-\infty}^{\infty}f_{XY}(x,y)dy, \quad\forall(x,y) \] \[\text{Marginal pdf of Y: }f_Y(y)=\int_{-\infty}^{\infty}f_{XY}(x,y)dx, \quad\forall(x,y) \] |
| Joint cdf | \[ F_{XY}(x_0,y_0)=\int_{-\infty}^{x_0}\int_{-\infty}^{y_0}f_{XY}(x,y)dx dy \] | |
| Conditional pdf | \[ f_{X|Y}=f_{XY}(x,y)/f_Y(y), \quad \forall(x,y),f_Y(y)>0 \] | \[ f_{Y|X}=f_{XY}(x,y)/f_X(x), \quad \forall(x,y),f_X(x)>0 \] |
| Conditional cdf | \[ F_{X|Y}(x|y)=P(X\leq x|Y=y)\] | \[=\int_{-\infty}^xf_{XY}(x,y)/f_Y(y), \quad \forall(x,y),f_Y(y)>0 \] |
The population covariance of continuous random variables \(X\) and \(Y\) is
\[\sigma_{XY}=Cov(X,Y)=E[(X-\mu_X)(Y-\mu_Y)]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x-\mu_X)(y-\mu_y)f_{XY}dxdy.\]
The population correlation is then \[\rho_{XY}=Corr(X,Y)=\frac{\sigma_{XY}}{\sigma_X \sigma_Y}\]
The random variables \(X\) and \(Y\) are independent if and only if
\[F_{XY}(x,y)=F_X(x)F_Y(y)\] for every possible pair \((x,y)\).
Random variables \(X\) and \(Y\) has the following joint pdf:
\[f_{XY}(x,y)=\begin{cases}axy,&0\leq x<y\leq 1\\ 0,&\text{otherwise}\end{cases}\]
Determine the value of \(a\), the probability \(P(X\leq 2Y)\), the marginal probability \(f_X(x)\), the expected value \(E(X)\), the variance \(Var(X)\), and the conditional expected value \(E(Y|X=0.5)\). Also, check if \(X\) and \(Y\) are independent random variables.
ECON2250 Statistics for Economics - Fall 2025 - Maghfira Ramadhani