AE Lecture 9 Solution

Continuous Random Variables

Applied Exercise 1

Problem: A random variable $X \sim \text{Uniform}(0,2)$. Compute the population mean, standard deviation, the quantile function, and the median (quantiles at q = 0.5).

Solution

Finding the constant c for the PDF:

For a uniform distribution on [0, 2], the pdf has the form:

$$f_X(x) = \begin{cases} c, & 0 \le x \le 2 \\ 0, & \text{otherwise} \end{cases}$$

For a valid pdf, we need $\int_{-\infty}^{\infty} f_X(x) dx = 1$:

$$\int_0^2 c \, dx = 1$$

$$c[x]_0^2 = 1$$

$$c(2-0) = 1$$

$$2c = 1$$

$$c = \frac{1}{2}$$

Therefore:

$$f_X(x) = \begin{cases} \frac{1}{2}, & 0 \le x \le 2 \\ 0, & \text{otherwise} \end{cases}$$

Population Mean (using integral):

$$\begin{split} E(X) &= \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx = \int_0^2 x \cdot \frac{1}{2} \, dx \\ &= \frac{1}{2} \int_0^2 x \, dx = \frac{1}{2} \left[\frac{x^2}{2} \right]_0^2 \\ &= \frac{1}{2} \cdot \frac{4}{2} = \frac{1}{2} \cdot 2 = 1 \end{split}$$

Variance (Method 1 - Direct Integration):

$$\begin{aligned} \operatorname{Var}(X) &= \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) \, dx = \int_0^2 (x - 1)^2 \cdot \frac{1}{2} \, dx \\ &= \frac{1}{2} \int_0^2 (x^2 - 2x + 1) \, dx \\ &= \frac{1}{2} \left[\frac{x^3}{3} - x^2 + x \right]_0^2 \\ &= \frac{1}{2} \left(\frac{8}{3} - 4 + 2 \right) = \frac{1}{2} \left(\frac{8}{3} - 2 \right) \\ &= \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3} \end{aligned}$$

Variance (Method 2 - Using $Var(X) = E(X^2) - [E(X)]^2$):

First, compute $E(X^2)$:

$$\begin{split} E(X^2) &= \int_0^2 x^2 \cdot \frac{1}{2} \, dx = \frac{1}{2} \left[\frac{x^3}{3} \right]_0^2 \\ &= \frac{1}{2} \cdot \frac{8}{3} = \frac{4}{3} \end{split}$$

Then:

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{4}{3} - 1^{2}$$
$$= \frac{4}{3} - 1 = \frac{1}{3}$$

Standard Deviation:

$$\sigma_X = \sqrt{\text{Var}(X)} = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \approx 0.577$$

CDF:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ \frac{x - 0}{2 - 0} = \frac{x}{2}, & 0 \le x \le 2 \\ 1, & x > 2 \end{cases}$$

Quantile Function: For 0 < q < 1, solve $F_X(\tau_{X,q}) = q$:

$$\frac{\tau_{X,q}}{2} = q \implies \tau_{X,q} = 2q$$

Median:

$$\mathrm{Median} = \tau_{X,0.5} = 2(0.5) = 1$$

PDF and CDF for Exercise 1

PDF of Uniform(0,2)

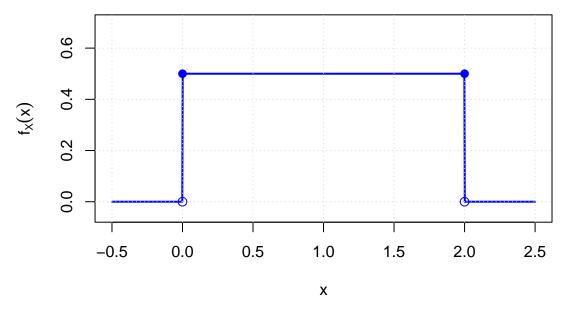


Figure 1: PDF of Uniform(0,2) Distribution

CDF of Uniform(0,2)

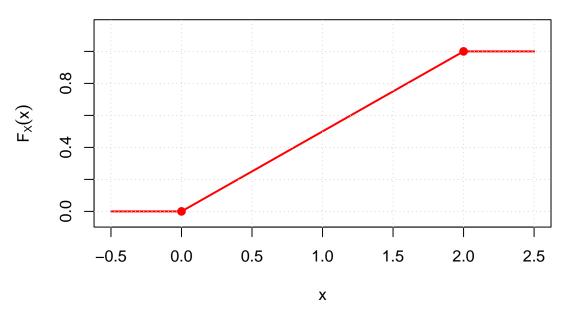


Figure 2: CDF of Uniform(0,2) Distribution

Applied Exercise 2

Problem: X is a continuous random variable with the following pdf:

$$f_X(x) = \begin{cases} ax, & -1 \le x < 0 \\ x, & 0 \le x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Determine the value of a, the cdf $F_X(x)$, the quantile function $\tau_{X,q}$, and the population mean E(X).

Solution

Finding a:

For a valid pdf, we need $\int_{-\infty}^{\infty} f_X(x) dx = 1$:

$$\int_{-1}^{0} ax \, dx + \int_{0}^{1} x \, dx = 1$$

$$a \left[\frac{x^{2}}{2} \right]_{-1}^{0} + \left[\frac{x^{2}}{2} \right]_{0}^{1} = 1$$

$$a \left(0 - \frac{1}{2} \right) + \left(\frac{1}{2} - 0 \right) = 1$$

$$-\frac{a}{2} + \frac{1}{2} = 1$$

$$-\frac{a}{2} = \frac{1}{2}$$

$$a = -$$

Therefore:

$$f_X(x) = \begin{cases} -x, & -1 \le x < 0 \\ x, & 0 \le x < 1 \\ 0, & \text{otherwise} \end{cases}$$

CDF $F_X(x)$:

For x < -1: $F_X(x) = 0$

For $-1 \le x < 0$:

$$\begin{split} F_X(x) &= \int_{-1}^x (-t) \, dt = - \left[\frac{t^2}{2} \right]_{-1}^x \\ &= -\frac{x^2}{2} + \frac{1}{2} = \frac{1-x^2}{2} \end{split}$$

For $0 \le x < 1$:

$$\begin{split} F_X(x) &= \int_{-1}^0 (-t) \, dt + \int_0^x t \, dt \\ &= \frac{1}{2} + \left[\frac{t^2}{2} \right]_0^x = \frac{1}{2} + \frac{x^2}{2} = \frac{1+x^2}{2} \end{split}$$

For $x \ge 1$: $F_X(x) = 1$

Therefore:

$$F_X(x) = \begin{cases} 0, & x < -1 \\ \frac{1-x^2}{2}, & -1 \le x < 0 \\ \frac{1+x^2}{2}, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

Quantile Function $\tau_{X,q}$:

For
$$0 < q < 0.5$$
: Solve $\frac{1-\tau_{X,q}^2}{2} = q$
$$1-\tau_{X,q}^2 = 2q$$

$$\tau_{X,q}^2 = 1-2q$$

$$\tau_{X,q} = -\sqrt{1-2q} \quad \text{(negative since } -1 \le \tau_{X,q} < 0\text{)}$$

For
$$0.5 \le q < 1$$
: Solve $\frac{1+\tau_{X,q}^2}{2}=q$
$$1+\tau_{X,q}^2=2q$$

$$\tau_{X,q}^2=2q-1$$

$$\tau_{X,q}=\sqrt{2q-1} \quad \text{(positive since } 0\le \tau_{X,q}<1)$$

Therefore:

$$\tau_{X,q} = \begin{cases} -\sqrt{1-2q}, & 0 < q < 0.5 \\ \sqrt{2q-1}, & 0.5 \le q < 1 \end{cases}$$

Population Mean E(X):

$$E(X) = \int_{-1}^{0} x \cdot (-x) \, dx + \int_{0}^{1} x \cdot x \, dx$$

$$= \int_{-1}^{0} (-x^{2}) \, dx + \int_{0}^{1} x^{2} \, dx$$

$$= -\left[\frac{x^{3}}{3}\right]_{-1}^{0} + \left[\frac{x^{3}}{3}\right]_{0}^{1}$$

$$= -\left(0 - \left(-\frac{1}{3}\right)\right) + \left(\frac{1}{3} - 0\right)$$

$$= -\frac{1}{3} + \frac{1}{3} = 0$$

PDF of X

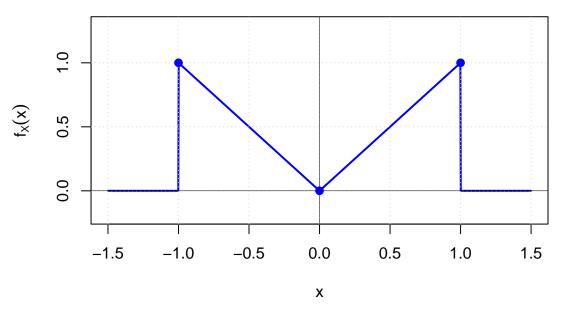


Figure 3: PDF of Random Variable X

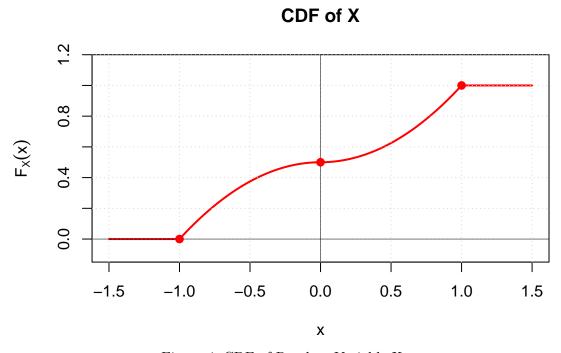


Figure 4: CDF of Random Variable X

PDF and CDF for Exercise 2

Applied Exercise 3

Problem: Random variables X and Y have the following joint pdf:

$$f_{XY}(x,y) = \begin{cases} axy, & 0 \leq x < y \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

Determine: (a) the value of a, (b) $P(X \le 2Y)$, (c) marginal pdf $f_X(x)$, (d) E(X), (e) Var(X), (f) E(Y|X=0.5), and (g) check if X and Y are independent.

Solution

(a) Finding a:

The region of integration is $\{(x, y) : 0 \le x < y \le 1\}$.

$$\int_{0}^{1} \int_{x}^{1} axy \, dy \, dx = 1$$

$$a \int_{0}^{1} x \left[\frac{y^{2}}{2} \right]_{x}^{1} dx = 1$$

$$a \int_{0}^{1} x \left(\frac{1}{2} - \frac{x^{2}}{2} \right) dx = 1$$

$$\frac{a}{2} \int_{0}^{1} (x - x^{3}) \, dx = 1$$

$$\frac{a}{2} \left[\frac{x^{2}}{2} - \frac{x^{4}}{4} \right]_{0}^{1} = 1$$

$$\frac{a}{2} \left(\frac{1}{2} - \frac{1}{4} \right) = 1$$

$$\frac{a}{2} \cdot \frac{1}{4} = 1$$

$$a = 8$$

(b) Finding $P(X \leq 2Y)$:

The condition $X \leq 2Y$ is equivalent to $Y \geq \frac{X}{2}$.

Given the constraint $0 \le x < y \le 1$, we need $y \ge \max(x, \frac{x}{2}) = x$ (since $x > \frac{x}{2}$ for x > 0).

8

Therefore, $X \leq 2Y$ is always satisfied in the support region, so:

$$P(X \le 2Y) = 1$$

(c) Marginal pdf $f_X(x)$:

For $0 \le x \le 1$:

$$\begin{split} f_X(x) &= \int_x^1 8xy \, dy = 8x \left[\frac{y^2}{2} \right]_x^1 \\ &= 8x \left(\frac{1}{2} - \frac{x^2}{2} \right) = 4x (1 - x^2) \end{split}$$

Therefore:

$$f_X(x) = \begin{cases} 4x(1-x^2), & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

(d) Expected Value E(X):

$$E(X) = \int_0^1 x \cdot 4x (1 - x^2) \, dx = 4 \int_0^1 (x^2 - x^4) \, dx$$
$$= 4 \left[\frac{x^3}{3} - \frac{x^5}{5} \right]_0^1 = 4 \left(\frac{1}{3} - \frac{1}{5} \right)$$
$$= 4 \cdot \frac{2}{15} = \frac{8}{15}$$

(e) Variance Var(X):

First, compute $E(X^2)$:

$$\begin{split} E(X^2) &= \int_0^1 x^2 \cdot 4x (1 - x^2) \, dx = 4 \int_0^1 (x^3 - x^5) \, dx \\ &= 4 \left[\frac{x^4}{4} - \frac{x^6}{6} \right]_0^1 = 4 \left(\frac{1}{4} - \frac{1}{6} \right) \\ &= 4 \cdot \frac{1}{12} = \frac{1}{3} \end{split}$$

Therefore:

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{1}{3} - \left(\frac{8}{15}\right)^{2}$$
$$= \frac{1}{3} - \frac{64}{225} = \frac{75}{225} - \frac{64}{225} = \frac{11}{225}$$

(f) Conditional Expected Value E(Y|X=0.5):

First, find the conditional pdf $f_{Y|X}(y|x=0.5)$:

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)} = \frac{8xy}{4x(1-x^2)} = \frac{2y}{1-x^2}$$

For x = 0.5:

$$f_{Y|X}(y|0.5) = \frac{2y}{1-0.25} = \frac{2y}{0.75} = \frac{8y}{3}, \quad 0.5 < y \le 1$$

Then:

$$E(Y|X=0.5) = \int_{0.5}^{1} y \cdot \frac{8y}{3} \, dy = \frac{8}{3} \int_{0.5}^{1} y^{2} \, dy$$
$$= \frac{8}{3} \left[\frac{y^{3}}{3} \right]_{0.5}^{1} = \frac{8}{9} \left(1 - \frac{1}{8} \right)$$
$$= \frac{8}{9} \cdot \frac{7}{8} = \frac{7}{9}$$

(g) Independence Check:

For independence, we need $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$.

First, find $f_Y(y)$. For $0 \le y \le 1$:

$$f_Y(y) = \int_0^y 8xy \, dx = 8y \left[\frac{x^2}{2} \right]_0^y$$

= $8y \cdot \frac{y^2}{2} = 4y^3$

Now check: $f_X(x) \cdot f_Y(y) = 4x(1-x^2) \cdot 4y^3 = 16xy^3(1-x^2)$

This does not equal $f_{XY}(x,y) = 8xy$.

Conclusion: X and Y are **NOT** independent.

Support Region for Exercise 3

The support region where $f_{XY}(x,y) > 0$ is the triangular region defined by $0 \le x < y \le 1$.

The shaded triangular region represents the area where the joint pdf is positive. The region is bounded by:

• Lower boundary: the line y = x

• Upper boundary: the line y = 1

• Left boundary: the line x = 0

Support Region: $\{(x,y): 0 \le x < y \le 1\}$

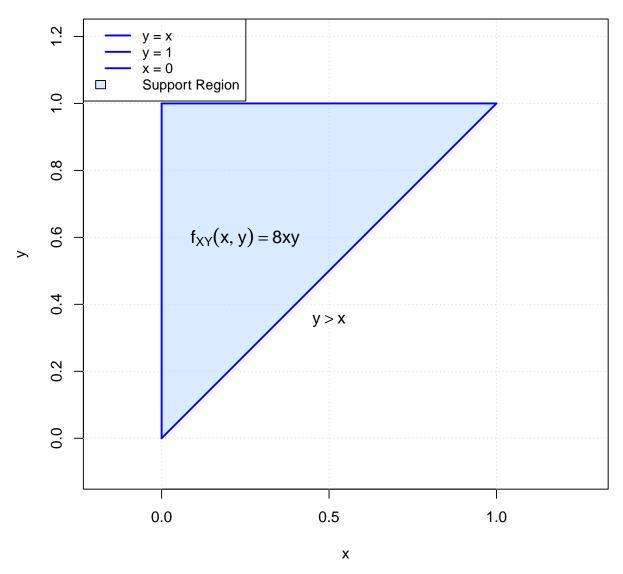


Figure 5: Support Region where joint PDF is positive